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Synopsis 

A theoretical and experimental study has been carried out on extrudate swell B ,  especially the 
influence of rheological properties and applied take-up force on the emerging melt. The prob- 
lem is analyzed in terms of (1) dimensional analysis, (2) force-momentum balances, (3) partially 
constrained elastic recovery. Analyses in terms of force-momentum balances are only able to 
give extrudate swell B in the asymptote of high Reynolds numbers. For low Reynolds numbers, 
they simply relate the take-up force to the pressure field in the spinneret. Increasing the take- 
up force predicts a decrease in the exit pressure. The partially constrained elastic recovery theo- 
ry yields an expression for B as a decreasing function of applied take-up force. Specifically, this 
is 

IF' = [B(O,]b - ( 4 / 7 r X , , , / p D 1 ) F  

where B(0)  is the extrudate swell in the absence of applied forces, X,ff is the effective relaxation 
time, is viscosity (both evaluated a t  the capillary wall), and D is the spinneret capillary diame- 
ter. An experimental study of extrudate swell of several rbeologically characterized melts (high- 
density polyethylene, low-density polyethylene, polypropylene, polystyrene) has been carried out 
a t  18OOC by four different methods (frozen, annealed in hot silicone oil, photographed emerging 
into air, photographed emerging through 180°C silicone oil) in the absence of applied take-up 
forces. Extrudate swell for a melt emerging from dies with differing diameters correlates with 
capillary-wall shear rate. A comparison of extrudate swell with normal stress-shear stress ratio 
shows the best agreement for frozen extrudates and photographs of melts emerging into air. The 
data is compared to the Tanner theory of extrudate swell. B has been determined during melt 
spinning and shown to be a function of take-up force for both a high-density polyethylene and 
polypropylene melt. B decreases rapidly with applied take-up stresses. The results are com- 
pared to the predictions of the partially constrained elastic recovery theory. 

INTRODUCTION 

When polymer melts emerge from a cylindrical die orifice, the diameter of 
the extrudate is generally greater than the capillary. The ratio of the extrud- 
ate diameter d to the die orifice diameter D ,  the swell ratio B ,  varies from 
melt to melt and is a function of extrusion rate and die length and diameter. 
During the melt spinning of fibers, external forces are applied to molten poly- 
mer filaments emerging from dies. It is generally found that the application 
of a take-up force on a polymer filament emerging from a die results in a de- 

* Present address: Dow Chemical Company, Freeport, Texas. 
1005 

8 1976 by John Wiley & Sons, Inc. 



1006 WHITE AND ROMAN 

crease in the swell ratio and a continued drawing down of the filament diame- 
ter as long as the melt temperature is high enough to maintain finite elonga- 
tional flow response.1.2 It is the purpose of this paper to present an experi- 
mental and theoretical study of extrudate swell especially of the influence of 
applied take-up forces on the magnitude of the swell ratio of a molten fiber 
emerging from a spinneret. 

While as early as 1845, Brooman3 had manufactured thread from gutta 
percha by taking up the descending filament with an applied tension, the his- 
tory of the melt spinning process dates only to Carothers and Hill4 in 1932. 
Studies of the deformation behavior during melt spinning were first made by 
Ziabicki and Kedz ie r~ka ' ,~ ,~  with serious consideration of nonisothermal ef- 
fects being due to Kase and Matsuo.'j The view taken by these researchers 
and some more recent  investigator^^-^ is that the rheological response of the 
melts in the spinline may be represented in terms of an elongational viscosity. 
However, experimental studies of the tensile stress variation in isothermal 
polyolefin melts during uniaxial extension find use of an elongational viscosi- 
ty  inadeq~ate . l~, ' l , '~  Nowhere on the spinline is this problem more apparent 
than at  the exit of the spinneret where the melt swells as it emerges from the 
capillary. Extrudate swell has long been known in the polymer industry and 
suggested as due to unconstrained elastic recovery.15-17 Analyses in terms of 
this mechanism have been proposed and carried through a t  various levels of 

In melt spinning, the recovery is not unconstrained, 
rather the melt recovers from Poiseuille shearing flow to a state of uniaxial 
stress. 

This paper is based on an analysis of the spinline extrudate swell problem. 
Extrudates well in a spinline has received little attention and we known of no 
published analyses. The only study we are aware of is unpublished work of 
H. L. LaNieve of Celanese which has only been briefly and orally described to 
one of us (J.L.W.). LaNieve seems to have used a modification of the work of 
Nakajima and Shida.15 We present a series of three different theoretical 
analyses of the problem based on (i) dimensional analysis, (ii) force-momen- 
tum balance, and (iii) partially constrained elastic recovery. We will also 
present experimental studies of extrudate swell in the absence and in the 
presence of take-up forces. This paper represents a continuation of studies 
a t  the University of Tennessee on rheological behavior and structure develop- 
ment during melt ~ p i n n i n g . ~ ~ , ' " ~ ~ , ~ " ~ ~  In another recent paper,25 we have 
discussed three-dimensional elastic recovery following steady flows in some 
detail, and parts of the present paper represent an expansion of these views. 

THEORETICAL 

Nonlinear Viscoelasticity 

From the general theory of non-linear viscoelastic f l ~ i d s ~ ~ , ~ ~  the stress ten- 
sor may be represented as a hereditary functional of the deformation history, 
i.e., 

s = -00 
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where the total extent of the memory may be represented through a charac- 
teristic relaxation time. Generally, eq. (1) must be expressed as a complex 
infinite expansion of integrals. All but the simplest flow problems prove too 
difficult to solve with eq. (1). Experimental studies by various research 
g r ~ u p s " , ~ ~ - ~ ~  have shown that the stress tensor in polymer solutions and 
melts may be represented by an equation of form 

where ml(z) and m2(2) are relaxation functions and c-l and c are the Finger 
and Cauchy deformation tensor; ml(z) and m2(z) may be reasonably well rep- 
resented by the forms 

t -  
m2(2) = --m(2) 2 

where t and the G; are constants. 
which depend upon deformation or deformation rate invariants. 
useful form of Xieff is26,28 

The Xieff are effective relaxation times 
A typical 

where n d  is the second invariant of the rate of deformation tensor, a is a con- 
stant, and A, is the asymptote of Xieff a t  low deformation rates. 

In steady long duration laminar shear flow u1 = rx2, the stress components 
from eq. (2) give rise to three functions: a shear stress 6 1 2  and two normal 
stress differences, N1 and N2: 

(4a) 

N ,  = (T,~ - gLL  = 2[ZG,A,,ffL]I'?. (4b) 

(4c) 

uI2 = /X = (ZG,A,,ff)r 

t 
N ,  = ~ 2 2  - ( T ~ J  = c[ZG~A,~~~']I ' '  = -N 2 " 

Dimensional Analysis 

To formulate the extrudate swell problem, we must simultaneously solve 
the constitutive equation with a balance of forces. The differential force bal- 
ance has the steady-state form31 

P(V'V)V = v.(T. (5) 

I t  is useful for us to first examine the extrudate swell problem in terms of 
dimensional analysis. Following the traditional treatments of Newtonian 
fluid mechanics (see, e.g., G ~ l d s t e i n ~ ~ )  and studies for viscoelastic 
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f l ~ i d s , ~ ~ , ~ ~ - ~ ~  we introduce a characteristic length L and a characteristic ve- 
locity V .  The dimensionless velocity field may be expressed as follows: 

] (6) 
LVp ACh V viscoelastic dimensionless boundary 

[ P .  L 5 ratio numbers, position, conditions 

where p is viscosity; p is density; LVpIp is a Reynolds number, N w ~ ~ ~ ;  A& is a 
characteristic time which might be taken as the maximum relaxation time of 
the melt; and A& V/L is a Weissenberg number, N w , . ~ ~ , ~ ~ , ~ ~ - ~ ~  The viscoelas- 
tic ratio numbers specify the character of the functional. 

From eq. (6), it may readily be shown that the extrudate swell B ,  repre- 
senting an integral over the free surface emerging from the spinneret, has the 
form 

, B, entry , g] (7) 

where D is the spinneret hole diameter, L is the length, d is the extrudate di- 
ameter, and F is the force applied to  the emerging fluid filament. If we re- 
strict ourselves to creeping flow which would be the case for polymer melts, 
the Reynolds number dependence does not appear. If we measure extrudate 
swell in polymer melts as a function of extrusion rate, the value of B will vary 
considerably from die to  die depending upon the diameter, LID, die entry ge- 
ometry, etc. The functionality of B upon flow rate and these parameters will 
vary from fluid to fluid. 

However, if we limit ourselves to  a particular polymer melt and only use 
dies of similar geometry, i.e., LID ratio and inlet, eq. (7) reduces to  a depen- 
dence of B upon V/D characteristic of the polymer and all experimental 

v = v *  ____  

viscoelastic die 

numbers geometry 
B = - d = f[?, A,,,--, ratio D D 

b 
F 

Fig. 1. Extrudate swell in the melt spinning of a fiber. 
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data should be normalizable by dividing the volumetric extrusion rate by the 
cube of the die diameter or the linear velocity by the die diameter. Equiva- 
lently, if we use Weissenberg's analysis of the capillary tube flow rate,27,39 B 
would be a unique function of the capillary wall shear rate. Clearly, also, if 
we take the asymptote of very large LID in which the residence time of the 
melt within the capillary exceeds its memory or characteristic time, then B 
will no longer depend upon the value of LID or die entrance geometry, i.e., 

viscoelastic, 

numbers LID- -  

Overall Force-Momentum Balance 

Let us make an overall force-momentum and mass flux balances between 
the end of the capillary die where the flowing polymer fluid is in fully devel- 
oped flow and a vertically descending extrudate which is being acted on grav- 
ity, air drag stresses uf, and filament tension F (see Fig. 1): 

ad2 R 
l R 2 n r p u 2 d r  - 2ma,,dr = p V , 2 7 ( x l )  + 

Equation (9) contains a number of interesting special cases. If we equate the 
right hand of eq. (9) a t  position x1 and position L a t  take-up device, the spin- 
line force balance of Ziabicki and K e d ~ i e r s k a l , ~ , ~  is obtained. In terms of 
F(xl) ,  this is 

For significant momentum flux but zero normal stress 011 gravity, air drag, 
and take-up force F ,  harm on'^^^.^^ theory of jet expansion may be obtained 
from Eq. (9): (T) = ~2 1 = S , ' z z ( ; ) d ~  r u 2  r 

(12) 

where u is the average velocity within the capillary. 
If we allow now for both normal  tress^^,^^ and take-up force; 

with 
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For the case of F equal to zero, we obtain the theory of Metzner et al.43 We 
may write eq. (13a) in the equivalent forms: 

From eqs. (13) and (14) we see that the influence of applied take-up force 
F ( L )  is to decrease B. It is also of interest to see that the extent of decrease 
of swell does not depend upon rheological properties but only applied take-up 
stress and momentum flux. In eq. (14b), we note that this dependence can 
be expressed in terms of the dimensionless groups of eq. (7) including the 
Reynolds and Weissenberg numbers and X,hF/pD2. 

Zero Momentum Flux Asymptote 

The above comments are based on 511 being independent of F.  We there- 
fore need to further investigate the normal stress 511 within the capillary. 
Following Lodge:* we divide the normal stress in eq. (13b) into pressure p 
and extra stress ~ 1 1  terms and eliminate the pressure with the radial compo- 
nent of the equation of motion: 

If we now integrate by parts, it may be shown that 

where azz(R) is the radial normal stress a t  the outer radius of the capillary 
(i.e., the negative of a transducer measured pressure). We may now see that 
our comments that increasing F decreases B is based on changes in a22(R,L) 
being small. 

For negligible momentum flux, we obtain from eq. (9) 

I t  seems clear from eqs. (16) and (17) that all we obtain from the force bal- 
ance is that increasing F should increase a22(R,L) or decrease (-022(R,L)) the 
pressure measured a t  the end of the die. Measurements of this exit pressure 
in polymer melts have been made by Han and Charles44 who find it to be sig- 
nificantly large and positive. The influence of take-up forces would be to de- 
crease the exit pressure and push it toward atmospheric. 

Elastic Recovery Theory of Extrudate Swell Under Tension 

In this section, we will develop an approximate theory of extrudate swell of 
We neglect momentum fluxes and molten polymers emerging from dies. 
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consider extrudate swell as partially unconstrained elastic recovery. Our cal- 
culations of recovery will use the methods of Lodge42 (compare White25), and 
they will be fitted into a theory of extrudate swell in the manner developed 
by Tanner.21 Our arguments are as follows. 

Consider a viscoelastic fluid defined by eqs. (2) and (3) to be at  rest until 
time 0, a t  which time it is subjected to a deformation which continues until 
time tR when the stress is released to a new state u ( t )  and the material exhib- 
its an unconstrained three-dimensional partial recovery. A t  some time t > 
tR, we may write 

- 
period of delayed recovery 

period of instantaneous recovery period of steady flow 

larnl(z)dz(e-l)+ - lmm2(z)dz(c)+ (18) 
< 

Y 
J 

period prior to deformation 

where the integral form t - ( t ~  + 8tR) to t - t R  represents the period of in- 
stantaneous elastic recovery following the release of the applied stresses. 
This will be of infinitesimal order and may be neglected. The quantities 
(c-l)+ and (c)+ represent the total deformation from time 0 to time t .  

In order to proceed, several simplications need to be made. These are: (i) E 

is zero and m2(2) may be neglected; (ii) rnl(z) may be represented as a single 
exponential; (iii) the deformation in the capillary is of long duration and en- 
trance effects in the die may be neglected. Assumption (iii) allows us to ne- 
glect the fourth term of eq. (18) and as shown by assumption (ii) 
allowsus to neglect the first term. This leaves us with only the third term 
with the upper limit going to infinity. 

Equation (18) is difficult to work with, for we must define the deformation 
precess in terms of an unknown reference state existing after the recovery. 
If, however, we change the reference state from the state following the recov- 
ery to the one just before the stress we released, calculations are much simpli- 
fied. This leads to 

where Q and QT are appropriate transformation matrices. From Q and QT 
we may define a recoverable deformation tensor applicable to unconstrained 
recoveries, i.e.,21,25 

Of special interest is the three-dimensional recovery from simple shear flow 
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and Poiseuille flow because of its application to extrudate swell. For simple 
shear flow, the kinematics may be specified by 

1 + r222 rz o 
Q ~ - ~ Q T  = r z  1 01. 

lo 0 1  
(23) 

Substitution into eq. (19) restricting ourselves to long duration flows and in- 
tegrating yields 

The above analysis is for simple shear flow, but we can with no great diffi- 
culty transform it to cylindrical coordinates to handle the problem of recov- 
ery from fully developed Poiseuille flow. Now taking x1 as the axial direc- 
tion, r as the radial direction, and 0 as the angular direction (compare Tan- 
nerZ1), the most general deformation of an untwisted cylinder is 

r,(t) = a1xl(t,d - g ( r )  
1 

ay., = - GI (24) 

where g ( r )  represents an x1 - r shearing deformation. Using eq. (24) to eval- 
uate Q and presuming the various annuli of fluid are held in tension with 
stress at(r), we may rewrite the left-hand side of Eq. (23) as follows 

where g' is dgldr. Equating eqs. (23) and (25) leads to 

1 
f f 2  

p-g' = GXesfr 

From eqs. (26), we obtain 
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+ GaZ2) + GXeffr2 = G[1 + 2X,ffT2] 

or (27) 
fJt 

G '  (y26 + --a 4 = [I + x e f f 2 r 2 ] .  

Integration of eq. (27) across the cross section and presuming that a2 is inde- 
pendent of radius leads to 

d l 2  7rd2 F --B6 + - + B4 = 1 27rr(l + Xeff2r2)dr 4 G (28) 

where we have interpreted the integral of ut across the extrudate as being the 
applied force. Noting [compare eq. (23)] that the shear stress in steady shear 
flow in a tube is for this model GX,& and that from the axial component of 
the equation of motion for fully developed Poiseuille flow in a tube27 

we may integrate eq. (28) to give 

where at, the average tensile stress in the extrudate, is the ratio of F to rd2 /4 .  
First the case where the force F is 

equal to zero 
Let us now interpret these results. 

where we have used eq. (4). This is equivalent to Tanner's earlier result.21 
When the force F is not equal to zero, 

*t 

- 

(324 B6 + -B4 = G rB(O) l6  

or 

In eq. (32b), 1 and X,ff refer to the fluid at  the capillary wall before it 
emerges. Note the occurrence of the dimensionless group X,ffF/pD2 which 
occurs in eqs. (7)' (8), and (14b). 

Again we see that the influence of take-up forces on extrudate swell is to 
decrease the swell. Equations (13) and (14) and (32) agree as to the influence 
of applied forces but differ to the exact analytical form. 

We suspect but have not proven that eq. (32) or a t  least the general charac- 
ter of its detailed derivation remains valid where short LID dies are used and 
die entry flow influences B. 

We now turn to experimental studies of extrudate swell. 
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RHEOLOGICAL CHARACTERISTICS OF POLYMER MELTS 
STUD I E D 

Materials 

Five commercial polymers were used in this study. These were a polysty- 
rene (PS) (Dow Styron 678), an isotactic polypropylene (PP) (Hercules Pro- 
fax 6523), a low-density polyethylene (LDPE) (Dow 310 M, MI = 5.0), and 
two high-density polyethylenes (5.0-HDPE, Phillips Marlex EMB 6050; and 
0.1-HDPE, Phillips Marlex EHM 6001). 

Rheological Characterization 

The non-Newtonian shear viscosity p and the first normal stress difference 
N1 of the five polymer melts were determined at  18OOC in the low shear rate 
region with the Weissenberg rheogoniometer. If 1 is the direction of flow; 2, 
the direction of shear; and r, the shear rate, then27,42 

2F 
I nR2 

N = -  

where R is the rotor rotation rate, rl/ is the cone angle, R is the rotor radius, M 
is the torque, and F is the force pushing apart the platens. A 3’56’ cone of 
2.5 cm diameter was used in the measurements. The shear rates were gener- 
ally restricted to values of 1 sec-’ and below because of disturbances in the 
gap between the cone and 

The non-Newtonian viscosity function p was measured in a higher shear 
rate region at  180°C using an Instron capillary rheometer installed in a floor 
model Instron University Testing Apparatus. This is the same apparatus 
used in our earlier s t ~ d i e s . ~ ~ , ~ ~  The capillary-wall shear stress was deter- 
mined from a plot of the total pressure p~ required to force through a die of 
length-diameter ratio LID through the e x p r e s s i ~ n ~ ~ - ~ ~  

where A p ,  is the pressure loss at  the die entry and the subscript w represents 
evaluation a t  the capillary wall. The shear rate at  the capillary wall was de- 
termined through Weissenberg’s r e l a t i ~ n s h i p ~ ~ , ~ ~  

(35) 

where 
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Fig. 2. Non-Newtonian viscosity p as a function of shear rate r (180OC). Solid points are rhe- 
ogoniometer data. Open points are capillary data. 

where Q is the volumetric extrusion rate and u is the local axial velocity with- 
in the capillary. 

Results 

The non-Newtonian viscosity function of the five melts studied are con- 
tained in Figure 2. The results are similar to data for these types of polymer 
melts contained in the literature.16y24,26.27,46,47 The melts were found to be 

1 F i - H D P E  
P 

(u 

E 
Y 

v 

z 

I t 

PS 
LDPE 
5- HDPE 

103 
0.01 0.10 1.00 

r (sec-7 

Fig. 3. Principal normal stress difference N1 as a function of shear rate r (18OoC). 
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Newtonian a t  low shear rates, and the viscosities decrease with increasing 
shear rate. The viscosities order according to 

0.1-HDPE > PP > PS > LDPE - 5-HDPE. 
The viscosities of the LDPE and 5-HDPE are similar. At low shear rates, the 
LDPE is a more viscous, but there is a crossover a t  intermediate shear rates. 

The principal normal stress data N1 for the five melts is summarized in 
Figure 3 as a function of shear rate. The results are again qualitatively simi- 
lar to those of other  researcher^^^-^^ with the normal stresses increasing more 
rapidly than the shear stress. The data order according to 

0.1-HDPE > PP > PS > LDPE > 5-HDPE. 

EXPERIMENTAL STUDY OF EXTRUDATE SWELL IN THE 
ABSENCE OF APPLIED STRESSES 

These experiments were carried out at  18OOC using our Instron capillary 
rheometer. Measurements were carried out using a series of eight capillaries 
with diameters ranging from 0.023 to 0.080 in. and LID ratios ranging from 
5.0 to 47.5. 

The extrudate swell of the unstressed extrudate from the Instron capillary 
rheometer were measured by four different techniques. First, the frozen ex- 
trudate diameter was measured using a micrometer. Secondly, the solidified 
extrudates were annealed in hot silicone oil at  temperatures above the melt- 
ing or glass transition temperature. For the polyethylenes and PS, the tem- 
perature used was 160°C, while for the PP which melts a t  about 165OC, the 
temperature used was 180°C. The samples were annealed for approximately 
15 min after which period they had achieved a constant diameter. The ex- 
trudates were removed and measured with a micrometer. 

A third technique used was direct photographs of the extrudate as it 
emerged from the capillary. A 35-mm camera with fine-grain film was used. 
The negatives were blown up on a grid screen using a slide projector and the 
diameters measured. Here, one must be wary as gravity will tend to decrease 
to extrudate swell below its true value. 

The fourth method of measurement was to extrude the melt into a bath of 
silicone oil a t  18OOC in an effort to approximate isothermal behavior. Photo- 
graphs of the extrudate in the bath were taken between 5 and 10 min after 
the extrudate emerged from the capillary. 

Results 

The first point which required a decision was the proper manner of plot- 
ting extrudate swell data for the various melts under study. For zero applied 
tension and negligible Reynolds numbers, eq. (7) suggests that B(0)  for any 
specific melt should correlate with V l D  when dies of varying diameter but 
equal LID ratio are studied. From eq. (37), this is equivalent to representing 
B(0) as a function of capillary wall shear rate rw. We studied the “frozen” 
extrudate swell of the melts, particularly the 5-HDPE melt, as a function of 
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Fig. 4. Frozen extrudate swell B(0)  for five polymer melts as a function of LID ratio a t  con- 
stant shear rate a t  180°C. 
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Fig. 5. Frozen extrudate swell B(0)  for five polymer melts as a function of capillary wall shear 
rate ru,. 
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Fig. 7 .  Stress relieved extrudate swell data of five polymer melts as a function of shear rate. 

extrusion rate, extrusion velocity, and capillary wall shear rate rw. Only rw 
was found to correlate data obtained from different diameter dies. 

The variation of frozen extrudate swell with LID ratio for the five polymer 
melts a t  a fixed rw is shown in Figure 4. B(0)  decreases with increasing LID, 
with the rate of decrease being greater for the LDPE compared to the other 
melts. The value of B(0)  for the LDPE is larger, especially for the smaller 
LID dies. In Figure 5, we plot the frozen extrudate B(0)  for the largest LID 
dies as a function of rW for the five melts. 

The variation of magnitude of extrudate swell with the type of measure- 
ment is shown in Figure 6 for the 5-HDPE. The values are largest for the 
isothermal extrusion into hot silicone oil and lowest for the frozen extrudates. 
The frozen extrudates and the photographed melt emerging into air from the 

2.4 I I 1 I 

Fig. 8. Frozen extrudate swell for five melts as a function of ( N l ) I a l ~ ) ~ ~  determined a t  capil- 
lary wall shear rate together with eqs. (31) and (36). 
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2.4 I I 

Fig. 9. Photographed emerging extrudate swell B(0)  for five melts as a function of (Nl) , , /  
( m ~ d , ~  determined a t  capillary-wall shear rate together with eqs. (31) and (36). 

Instron rheometer represent extrudates with frozen in residual stresses. The 
frozen extrudates annealed in hot silicone oil and the melts extruded directly 
into the same fluid represent stress relieved samples. As the data from two 
of the samples are measured at room temperature and two a t  180°C, it should 
be suspected that the four sets of data may be represented by two curves. As 
noted, for example, by Mendelson, Finger, and Bagley,*O there is a density 
ratio of p(2O0C)/p(l8O0C) of 1.26 for HDPE and 1.21 for LDPE. To normal- 
ize all extrudate swell a t  18OOC the 2OoC data should be multiplied by a fac- 
tor [p(20°C)/p(1800C)]1/”. Corrections of this magnitude are able to success- 
fully bring together the four sets of data into two curves. In Figure 7; we 
contrast the stress-relieved B(0)  data (at 20°C) as a function of capillary-wall 

2.4 I I I 
2.2 c : 

0 

0 

A 

B (0) 
2 . 0 1  1 8  

, . O L  
0.1 

Fig. 10. Photographed emerging extrudates swell into an isothermal silicone both a t  180°C as 
a function of (Nl)u, l (alz) ,c . .  Five melts are included in the study together with eqs. (31) and (36). 
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shear rate. It may be seen that the data are more widely separated than the 
frozen extrudate results. The polyethylenes exhibit much greater recovery in 
the annealing process than the polypropylene or polystyrene. 

Intuitively, extrudate swell may be interpreted in terms of elastic recovery, 
and this is the basis for the analyses of the earlier parts of this paper. We 
now inquire as to how well we are able to interpret our experimental data in 
this light. From eq. (31), we see that according to the formulation of the ex- 
trudate swell problem (in the absence of take-up forces) which was discussed 
earlier, B(0)  should be a unique function of A,& or (Nl),l(al2),, LID plus 
various viscoelastic ratio numbers. In Figure 8, we plot B(0)  versus the nor- 
mal stress-shear stress ratio for the solid frozen extrudates from the largest 
LID dies. In Figure 9, we plot B(0)  obtained from photographs of extrudates 
emerging into air versus (Nl),l(a12),, while in Figure 10, we plot B(0)  ob- 
tained for the melts emerging into hot silicone oil. Again, the B(0)  data are 
for the longest LID dies. A closer correlation is found for the photographed 
extrudates than for those equilibrated in silicone oil. This is superficially in 
disagreement with the results of Mendelson et aL20 but it must be remem- 
bered that these authors only consider various high-density polyethylenes 
and the materials included in their study actually are more similar to each 
other than the 5-HDPE and 0.1-HDPE of our study. 

We have also contrasted the data of this paper with the theory of extrudate 
swell that we have discussed. In Figures 8-10, we have plotted eq. (31), the 
result of Tanner's extrudate swell theory together with the modification 

recommended by this author.21 The additional C arises from the swell found 
in creeping flow of a Newtonian fluid. This was taken to be 0.1. The agree- 
ment may be seen to be best for eq. (36) with the frozen extrudates. The pre- 
dictions seem a bit low for the photographed extrudates, but the agreement 
could be improved by increasing the additive constant C. For the melts ex- 
truded into hot silicone oil, an increase of C can account for the polypropyl- 
ene and polystyrene data but not the polyethylenes. In Tanner's original 
paper, he made comparisons primarily with polystyrene melts. Vlachopou- 
los, Horie, and L i d ~ r i k i s ~ ~  also made study of extrudate swell which showed 
reasonably good agreement for eqs. (31). However, here again polystyrene 
was used. 

EXPERIMENTAL STUDY OF EXTRUDATES SWELL IN THE 
PRESENCE OF TAKE-UP FORCE 

Experimental 

This study was limited to three polymers: PP, 5-HDPE, and 0.1-HDPE. 
These are the same polymers investigated in various University of Tennessee 
studies of melt ~ p i n n i n g . ~ ~ ? ~ ~  The melts were delivered from a 1-in. Modern 
Plastics Machinery screw extruder used in our earlier s t ~ d i e s ~ ~ J ~ , ~ ~  through 
screens, a Zenith metering pump, and into a capillary die with a diameter 
0.062 in. and LID ratio of 10. The fiber was wound up on a spool, and ten- 
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sions in the lower part of the spinline were measured with a Rothschild 
tensionmeter.11J3,23 Photographs were taken of the melt as it emerged from 
the capillary. The diameter was measured at  the point of maximum swell 
about 0.2 in. below the capillary. 

Results 

Of the three melts studied, only two, the 5-HDPE and the PP, were spin- 
nable. The 0.1-HDPE broke at  very low take-up velocities and indeed ap- 
parently at  very low spinline tensions. The variations of extrudate swell with 
both take-up velocity and tensile stress (determined a t  the cross section of 
maximum swell) are plotted in Figures 11 and 12. The results for the two 
melts are very similar. These indicate a rapid decrease in extrudate swell 
with increasing take-up velocity and take-up force which is in agreement with 
Ziabicki and Kedzierska1,2 and other earlier researchers. 

Interpretation 

In eq. (32), we derived an expression for the variation of B with applied 
take-up force. This may be rewritten as follows: 

In Figure 13, we have plotted [B/B(O)I6 as a function of 4FB2/7rD2B6(0). 
The data for the two melts correlate well, but the plot is not linear. How- 
ever, this should not necessarily be expected because the coefficient in eq. 
(37) contains rheological properties and the theory is approximate. From 
Figure 13, we predict values of Xeff for the HDPE and PP in the range of 0.8 
to 6.0 sec if we use capillary-wall shear rate data. From N1 and p data, we 
predict values from 0.4 to 3.3 sec. All in all, these comparisons are very en- 
couraging. 

One must be a bit wary of the above interpretation because (1) the approxi- 
mate nature of the theory and ( 2 )  the LID ratio of the die in this study is only 
10, which is too small to expect a formulation of this problem which excludes 
the die entry flow to be a completely proper representation. 
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